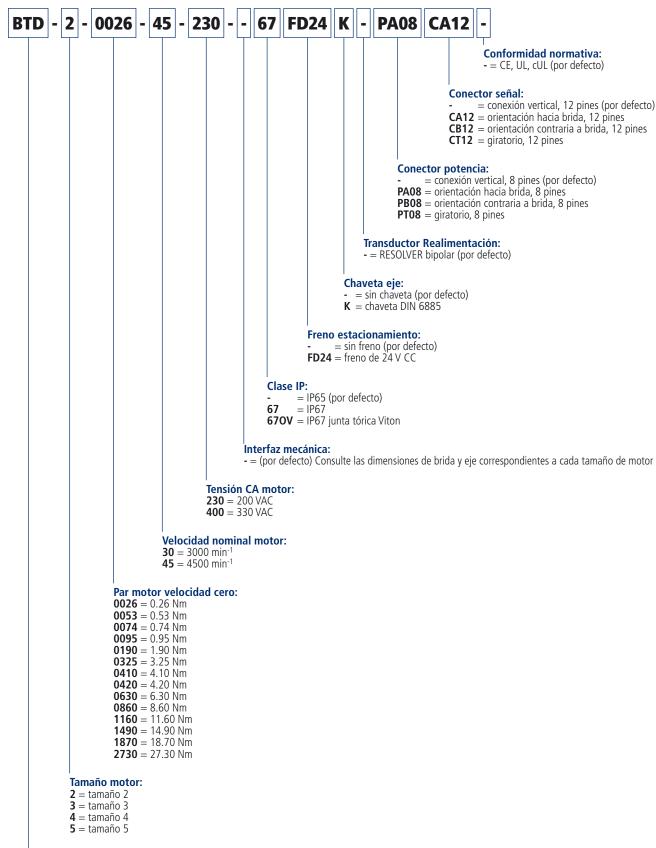
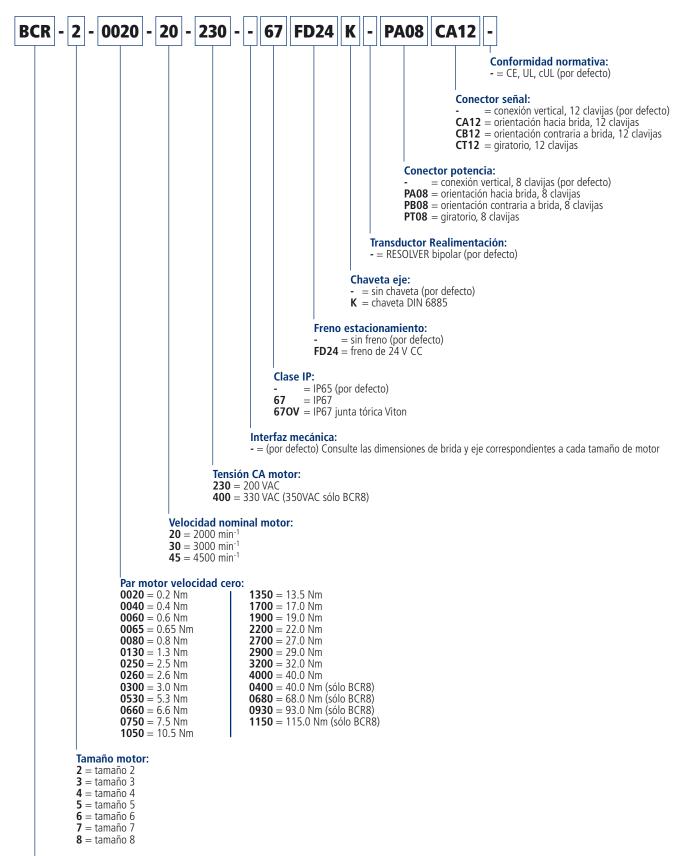
SOLUCIONES PARA PROCESOS Y AUTOMATIZACIONES INDUSTRIALES



8

BTD - BCR


Denominación de los servomotores BTD

Serie BTD

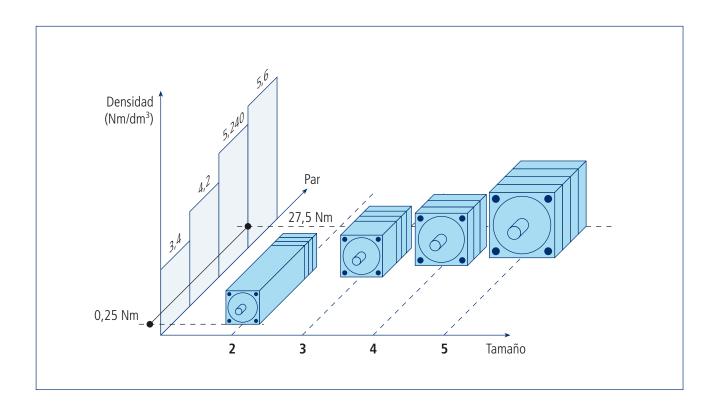
Denominación de los servomotores BCR

Serie BCR

Servomotor sin escobillas BTD (densidad de par)

Los avanzados circuitos eléctricos y magnéticos que se emplean en esta serie de servomotores permiten mejorar la disipación de temperatura del motor y aumentar el par disponible en un bastidor de dimensiones mínimas.

La serie BTD se fabrica en cuatro tamaños con numeración consecutiva (del 2 al 5), correspondiente al tamaño de brida de unión con los reductores.


Cada tamaño de brida proporciona varios valores de par obtenidos a partir de las distintas longitudes del motor. Gracias al volumen reducido del motor se puede desarrollar un alto valor de par.

El nombre de la serie BTD corresponde a:

BTD = **B**rushless-**T**orque-**D**ensity (densidad de par sin escobillas)

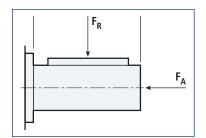
Los tamaños de motor y brida que garantizan un amplio rango de par (0,26 ÷ 27,5 Nm) son varios. Este amplio rango es la mejor solución ante cualquier requisito de aplicación en el que las prestaciones tengan que adaptarse a volúmenes reducidos.

	Serie	Tamaño	Brida [mm]	Velocidad [min ⁻¹]	Par a velocidad cero [Nm]			Densidad de par [Nm/dm³]	
		2	55	4500	0,26	0,53	0,74	0,95	3,4
	DTD	3	86	3000	0,95	1,9	3,25	4,2	4,2
	BTD	4	98	3000	4,1	6,3	8,6	-	5,2
		5	142	3000	11,6	14,9	18,7	27,3	5,6

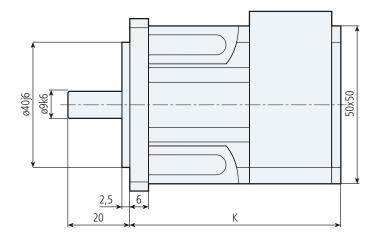
BTD2

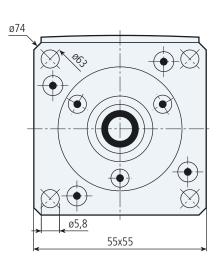
BTD - BCR

11


Todos los servomotores BTD de tamaño 2 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

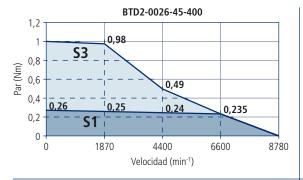
La versión básica del motor no lleva montado el freno electromecánico; sin embargo, es una opción que se puede seleccionar utilizando el código correspondiente en la denominación (consulte el capítulo relacionado con la denominación del servomotor). La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

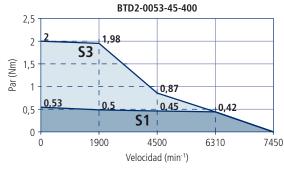

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud K (mm)		
MOTOL	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno	
BTD2-0026	0,26	4500	55	67	105	
BTD2-0053	0,53			82	120	
BTD2-0074	0,74	4500		97	135	
BTD2-0095	0,95			112	150	

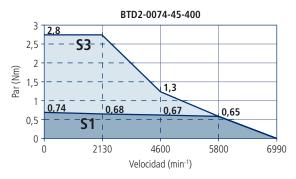

Se dispone de cuatro modelos de servomotor BTD 2 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 4500 min⁻¹.

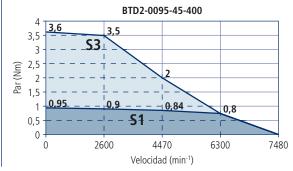
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)			
MOTOL	Radial F _R	Axial F _A		
BTD2-0026	219	42		
BTD2-0053	234	45		
BTD2-0074	245	46		
BTD2-0095	252	48		

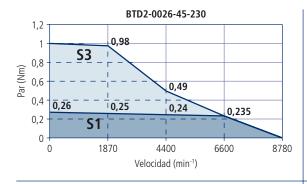

Motor		BTD2-0026-45-400	BTD2-0053-45-400	BTD2-0074-45-400	BTD2-0095-45-400
 Par a velocidad cero	M _o [Nm]	0,26	0,53	0,74	0,95
Velocidad nominal	n _n [min ⁻¹]	4500	4500	4500	4500
Tensión bus de CC del convertido	r V _{dc} [V]	560	560	560	560
Tensión nominal	$V_n[V]$	330	330	330	330
Número de polos de motor	p_{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0,24	0,45	0,67	0,84
Corriente nominal	I _n [A]	0,68	0,66	0,89	1,19
Corriente a velocidad cero	I _o [A]	0,42	0,73	0,96	1,31
Par de Pico	M _{max} [Nm]	1,0	2,0	2,8	3,6
Corriente de Pico	I _{max} [A]	1,7	3,0	3,9	5,3
Constante EMF	C _E [V/1000min ⁻¹]	37,5	44,0	47,0	44,0
Constante de par	K _T [Nm/A]	0,62	0,73	0,78	0,73
Potencia nominal	P _n [W]	110	210	315	395
Resistencia estatórica entre fases	$R_pp\left[\Omega ight]$	106	54	37,9	21,6
Inductancia estatórica entre fase	L _{pp} [mH]	176,0	104,0	70,0	49,1
Inercia de rotor	J _m [kgcm ²]	0,06	0,08	0,10	0,12
Constante de tiempo eléctrica	$ au_{ ext{el}} \left[ext{ms} ight]$	1,7	1,9	1,8	2,3
Constante de tiempo térmica	τ _{th} [min]	13	15	20	22
Masa sin freno	m _M [kg]	0,750	0,920	1,090	1,260
Masa con freno	m _{MF} [kg]	1,190	1,360	1,530	1,700

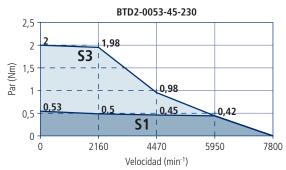

 T_{amb} = 40 °C (temperatura ambiente)

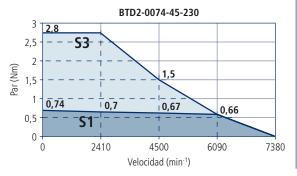

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

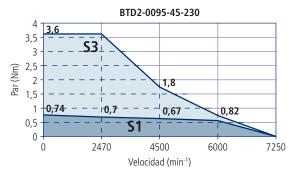

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

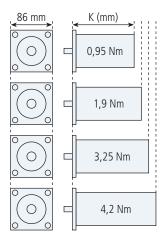

Motor		BTD2-0026-45-230	BTD2-0053-45-230	BTD2-0074-45-230	BTD2-0095-45-230
Par a velocidad cero	M _o [Nm]	0,26	0,53	0,74	0,95
Velocidad nominal	n _n [min ⁻¹]	4500	4500	4500	4500
Tensión bus de CC del convertido	or V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p _{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0,24	0,45	0,67	0,84
Corriente nominal	I _n [A]	0,68	1,11	1,55	1,90
Corriente a velocidad cero	I _o [A]	0,70	1,26	1,66	2,10
Par de Pico	M _{max} [Nm]	1,0	2,0	2,8	3,6
Corriente de Pico	I _{max} [A]	2,9	5,1	6,7	8,5
Constante EMF	K _E [V/1000min ⁻¹]	21,0	25,5	27,0	27,5
Constante de par	K_T [Nm/A]	0,37	0,42	0,45	0,45
Potencia nominal	P _n [W]	110	210	315	395
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	36,8	17,4	12,1	8,4
Inductancia estatórica entre fase	L _{pp} [mH]	62,0	34.1	22,8	19,4
Inercia de rotor	J _m [kgcm ²]	0,06	0,08	0,10	0,12
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	1,7	2,0	1,9	2,3
Constante de tiempo térmica	$\tau_{\text{th}} [\text{min}]$	13	15	20	22
Masa sin freno	m _M [kg]	0,750	0,920	1,090	1,260
Masa con freno	m _{MF} [kg]	1,190	1,360	1,530	1,700


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)


Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

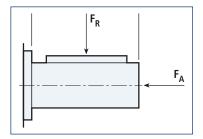
Característica par-velocidad:

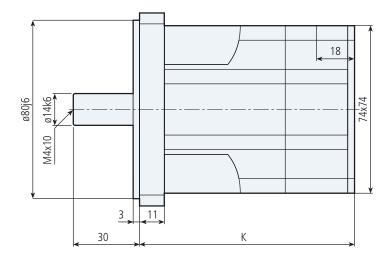


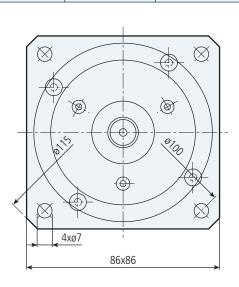
BTD3

Todos los servomotores BTD de tamaño 3 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).

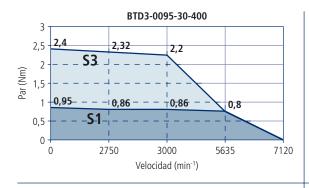

La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

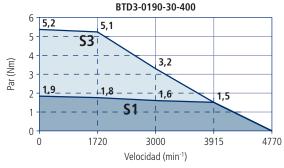

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud K (mm)	
MOTOL	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BTD3-0095	0,95		86	95	135
BTD3-0190	1,9	2000		113	153
BTD3-0325	3,25	3000		149	189
BTD3-0420	4,2			185	225

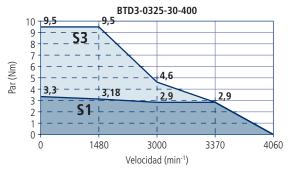

Se dispone de cuatro modelos de servomotor BTD 3 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 3000 min⁻¹.

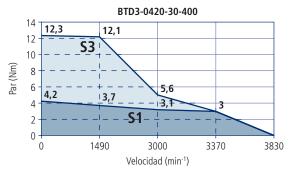
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)				
MOTOL	Radial F _R	Axial F _A			
BTD3-0095	335	64			
BTD3-0190	368	70			
BTD3-0325	406	77			
BTD3-0420	427	81			


Motor		BTD3-0095-30-400	BTD3-0190-30-400	BTD3-0325-30-400	BTD3-0420-30-400
Par a velocidad cero	M _o [Nm]	0,95	1,9	3,25	4,2
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	or V _{dc} [V]	560	560	560	560
Tensión nominal	V _n [V]	330	330	330	330
Número de polos de motor	p_{mot}	10	10	10	10
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M_n [Nm]	0,86	1,6	2,9	3,1
Corriente nominal	I _n [A]	1,28	1,46	2,3	2,3
Corriente a velocidad cero	I _o [A]	1,32	1,66	2,4	3
Par de Pico	M _{max} [Nm]	2,4	5,2	9,5	12,3
Corriente de Pico	I _{max} [A]	4,9	6,7	10,6	12,9
Constante EMF	K _E [V/1000min ⁻¹]	43,5	69	81	86
Constante de par	K_T [Nm/A]	0,72	1,14	1,34	1,42
Potencia nominal	$P_{n}[W]$	270	500	910	970
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	12,6	11,6	6,5	4,6
Inductancia estatórica entre fase	L _{pp} [mH]	38	42,3	30,6	26,1
Inercia de rotor	J _m [kgcm ²]	0,5	0,7	1,1	1,5
Constante de tiempo eléctrica	$\tau_{\text{el}} [\text{ms}]$	3	3,6	4,7	5,7
Constante de tiempo térmica	$\tau_{\text{th}} \ [\text{min}]$	25	30	33	36
Masa sin freno	m _M [kg]	1,525	2,090	3,220	4,350
Masa con freno	m _{MF} [kg]	2,115	2,680	3,810	4,940


 T_{amb} = 40 °C (temperatura ambiente)

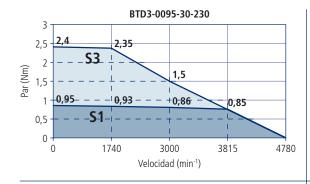

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

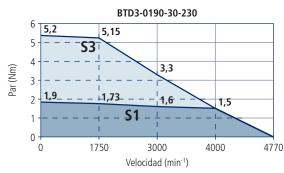

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

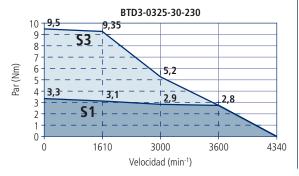
Característica par-velocidad:

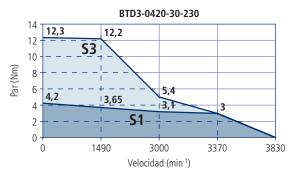
BTD3 230V

Motor		BTD3-0095-30-230	BTD3-0190-30-230	BTD3-0325-30-230	BTD3-0420-30-230
Par a velocidad cero	M _o [Nm]	0,95	1,9	3,25	4,2
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	r V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p_{mot}	10	10	10	10
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0,86	1,6	2,9	3,1
Corriente nominal	I _n [A]	1,43	2,4	4	3,7
Corriente a velocidad cero	I _o [A]	1,47	2,8	4,3	4,8
Par de Pico	M _{max} [Nm]	2,4	5,2	9,5	12,3
Corriente de Pico	I _{max} [A]	5,4	11,1	18,6	21
Constante EMF K	E [V/1000min ⁻¹]	39	41,5	46	53
Constante de par	K_T [Nm/A]	0,65	0,69	0,76	0,88
Potencia nominal	$P_{n}[W]$	270	500	910	970
Resistencia estatórica entre fases	$R_pp\left[\Omega ight]$	9,9	4	2,2	1,77
Inductancia estatórica entre fase	L _{pp} [mH]	30,6	15,4	9,8	10
Inercia de rotor	J _m [kgcm ²]	0,5	0,7	1,1	1,5
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	3,1	3,9	4,5	5,6
Constante de tiempo térmica	$\tau_{\text{th}} [\text{min}]$	25	30	33	36
Masa sin freno	m _M [kg]	1,525	2,090	3,220	4,350
Masa con freno	m _{MF} [kg]	2,115	2,680	3,810	4,940

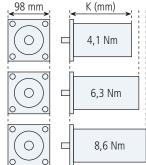

Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)

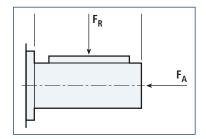

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

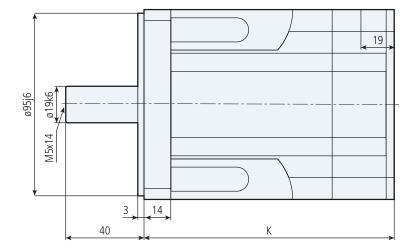

BTD4

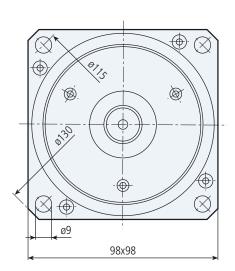
Todos los servomotores BTD de tamaño 4 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).


La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
WIOLOI	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BTD4-0410	4,1	3000	98	125	166
BTD4-0630	6,3			155	196
BTD4-0860	8.6			185	226

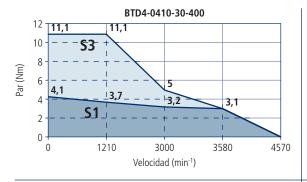


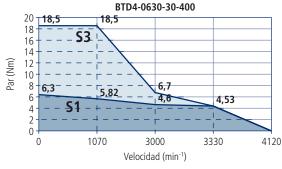

Se dispone de cuatro modelos de servomotor BTD 4 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 3000 min⁻¹.

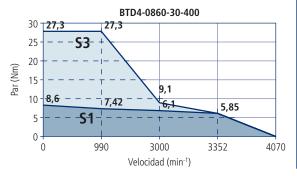
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)			
MOLOI	Radial F _R	Axial F _A		
BTD4-0410	594	113		
BTD4-0630	648	123		
BTD4-0860	682	130		

BTD4 400V


Motor		BTD4-0410-30-400	BTD4-0630-30-400	BTD4-0860-30-400
Par a velocidad cero	M _o [Nm]	4,1	6,3	8,6
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000
Tensión bus de CC del convertido	or V _{dc} [V]	560	560	560
Tensión nominal	V _n [V]	330	330	330
Número de polos de motor	p _{mot}	10	10	10
Número de polos de resolver	p _{res}	2	2	2
Par nominal	M _n [Nm]	3,2	4,6	6,1
Corriente nominal	I _n [A]	2,8	3,6	4,8
Corriente a velocidad cero	I _o [A]	3,4	4,77	6,4
Par de Pico	M _{max} [Nm]	11,1	18,5	27
Corriente de Pico	I _{max} [A]	13,6	21	31
Constante EMF	K _E [V/1000min ⁻¹]	72	80	81
Constante de par	K _T [Nm/A]	1,19	1,32	1,34
Potencia nominal	P _n [W]	1000	1440	1910
Resistencia estatórica entre fases	$R_pp\left[\mathbf{\Omega} ight]$	4	2,7	1,81
Inductancia estatórica entre fase	L _{pp} [mH]	34	25	18,6
Inercia de rotor	J _m [kgcm ²]	1,7	2,6	3,5
Constante de tiempo eléctrica	τ _{el} [ms]	8,5	9,9	10,3
Constante de tiempo térmica	$ au_{th}$ [min]	29	31	33
Masa sin freno	m _M [kg]	4,275	5,340	6,960
Masa con freno	m _{MF} [kg]	5,095	6,160	7,780


Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

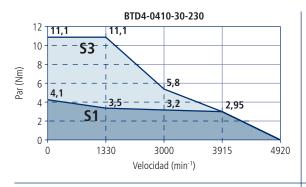
Característica par-velocidad:

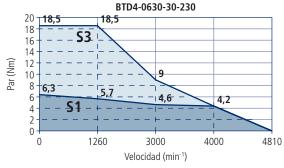
BTD4 230V

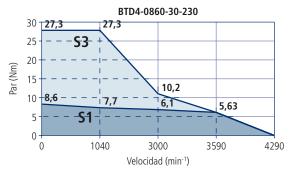
BTD - BCR

19

Motor		BTD4-0410-30-230	BTD4-0630-30-230	BTD4-0860-30-230
Par a velocidad cero	M _o [Nm]	4,1	6,3	8,6
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000
Tensión bus de CC del convertido	or V _{dc} [V]	320	320	320
Tensión nominal	V _n [V]	200	200	200
Número de polos de motor	p _{mot}	10	10	10
Número de polos de resolver	p _{res}	2	2	2
Par nominal	M _n [Nm]	3,2	4,6	6,1
Corriente nominal	I _n [A]	5	7	8,3
Corriente a velocidad cero	I _o [A]	6	9,13	11,2
Par de Pico	M _{max} [Nm]	11,1	18,5	27
Corriente de Pico	I _{max} [A]	24	40	53
Constante EMF	K _E [V/1000min ⁻¹]	40,5	41,5	46,5
Constante de par	K _T [Nm/A]	0,67	0,69	0,77
Potencia nominal	P _n [W]	1000	1440	1910
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	1,24	0,70	0,59
Inductancia estatórica entre fase	L _{pp} [mH]	10,6	6,9	6,2
Inercia de rotor	J _m [kgcm ²]	1,7	2,6	3,5
Constante de tiempo eléctrica	$ au_{ ext{el}}$ [ms]	8,5	9,9	10,3
Constante de tiempo térmica	τ _{th} [min]	29	31	33
Masa sin freno	m _M [kg]	4,275	5,340	6,960
Masa con freno	m _{MF} [kg]	5,095	6,160	7,780

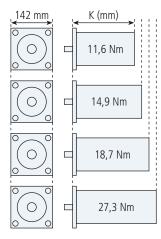

Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

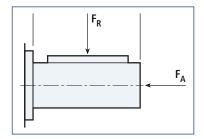
Característica par-velocidad:

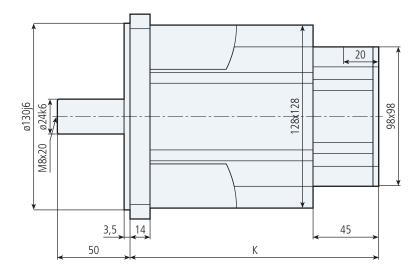


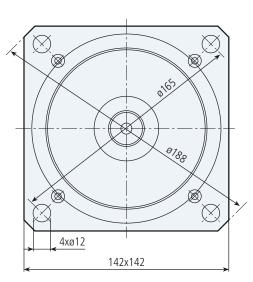
BTD5

Todos los servomotores BTD de tamaño 5 presentan exactamente una brida de las mismas dimensiones, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).

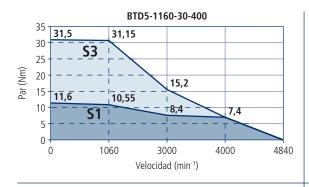

La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

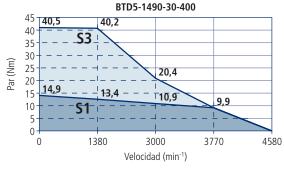

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
Motor	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BTD5-1160	11,6		142	173	224
BTD5-1490	14,9	2000		201	252
BTD5-1870	18,7	3000		231	282
BTD5-2730	27,3			291	342

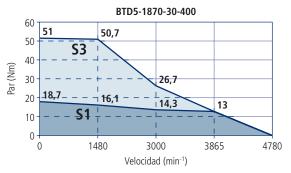

Se dispone de cuatro modelos de servomotor BTD 4 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 4500 min⁻¹.

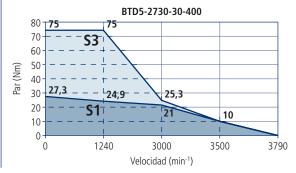
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)				
MOTOL	Radial F _R	Axial F _A			
BTD5-1160	672	128			
BTD5-1490	713	135			
BTD5-1870	743	141			
BTD5-2730	783	149			


Motor		BTD5-1160-30-400	BTD5-1490-30-400	BTD5-1870-30-400	BTD5-2730-30-400
Par a velocidad cero	M _o [Nm]	11,6	14,9	18,7	27,3
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	or V _{dc} [V]	560	560	560	560
Tensión nominal	$V_n[V]$	330	330	330	330
Número de polos de motor	p _{mot}	10	10	10	10
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	8,4	10,9	14,3	21
Corriente nominal	I _n [A]	7,9	9,6	13,1	14,9
Corriente a velocidad cero	I _o [A]	10,4	12,5	16,4	19
Par de Pico	M _{max} [Nm]	32	41	51	75
Corriente de Pico	I _{max} [A]	49	49	61	68
Constante EMF	K _E [V/1000min ⁻¹]	68	72	69	87
Constante de par	K_T [Nm/A]	1,12	1,19	1,14	1,44
Potencia nominal	$P_{n}[W]$	2640	3420	4490	6600
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	0,71	0,48	0,35	0,32
Inductancia estatórica entre fase	L _{pp} [mH]	11,4	8,5	6,4	6,8
Inercia de rotor	J _m [kgcm ²]	6,8	8,3	11,0	15,3
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	16,0	16,8	18,3	21
Constante de tiempo térmica	$ au_{\text{th}}$ [min]	50	55	60	75
Masa sin freno	m _M [kg]	8,100	10,100	12,100	16,100
Masa con freno	m _{MF} [kg]	9,180	11,180	13,180	17,180


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)


Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

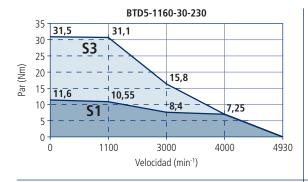
Característica par-velocidad:

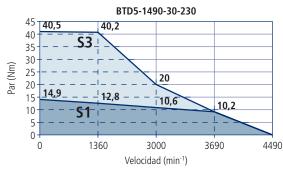
22

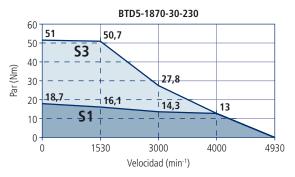
BTD - BCR

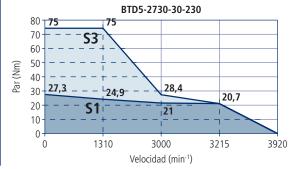
BTD5 230V

Motor		BTD5-1160-30-230	BTD5-1490-30-230	BTD5-1870-30-230	BTD5-2730-30-230
 Par a velocidad cero	M _o [Nm]	-	-	-	-
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	r V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p_{mot}	10	10	10	10
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	8,4	10,9	14,3	21,0
Corriente nominal	I _n [A]	13,2	15,6	22,4	25,4
Corriente a velocidad cero	I _o [A]	17,3	20,1	27,9	32,4
Par de Pico	M _{max} [Nm]	32	41	51	75
Corriente de Pico	I _{max} [A]	82	80	105	116
Constante EMF	(E [V/1000min ⁻¹]	40,5	44,5	40,5	51,0
Constante de par	K_T [Nm/A]	0,67	0,74	0,67	0,84
Potencia nominal	$P_{n}[W]$	2640	3420	4490	6600
Resistencia estatórica entre fases	$R_pp\left[\Omega ight]$	0,25	0,19	0,12	0,12
Inductancia estatórica entre fase	L _{pp} [mH]	4,0	3,2	2,2	2,3
Inercia de rotor	J _m [kgcm ²]	6,8	8,3	11,0	15,3
Constante de tiempo eléctrica	$ au_{el}$ [ms]	16,0	16,8	18,3	19,2
Constante de tiempo térmica	$ au_{th}$ [min]	50	55	60	75
Masa sin freno	m _M [kg]	8,100	10,100	12,100	16,100
 Masa con freno	m _{MF} [kg]	9,180	11,180	13,180	17,180


Características del motor en las siguientes condiciones:


= 40 °C (temperatura ambiente)


= 105 °C (temperatura de calentamiento del bobinado)

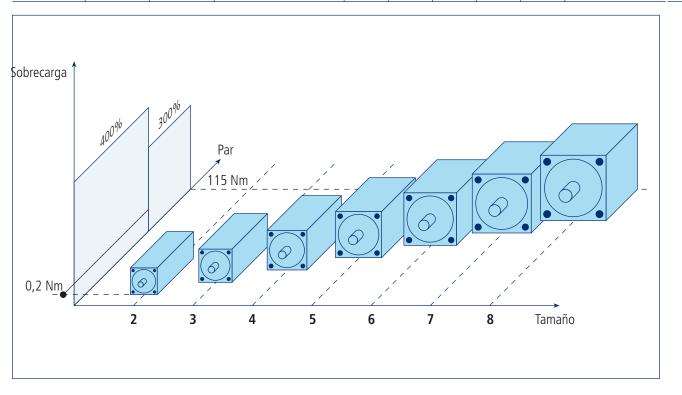

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

23

Servomotor sin escobillas BCR (gama clásica)

El circuito magnético optimizado y el bobinado aislado generan una gran disponibilidad de par, garantizando una larga duración del motor.

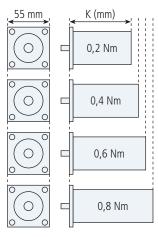

La serie BCR se fabrica en siete tamaños de servomotor con numeración consecutiva (del 2 al 8), correspondiente al tamaño de brida de unión con los reductores.

Al igual que sucede en la serie BTD, la serie BCR también ofrece diversos valores de par a partir de las diferentes longitudes del motor. Esto permite conseguir altos niveles de par continuos y una elevada sobrecarga temporal de hasta el 400%.

El nombre de la serie BCR (**B**rushless **C**lassic **R**ange: gama clásica sin escobillas) se debe a las características más importantes de este servomotor, que es capaz de garantizar un par elevado en un amplio rango de velocidad.

El amplio rango de par (0,2 ÷ 115 Nm) durante el funcionamiento continuo y la alta sobrecarga de corta duración hacen que los dispositivos BCR resulten muy adecuados para aplicaciones altamente dinámicas.

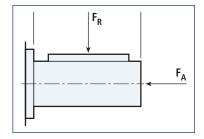
Serie	Tamaño	Brida [mm]	Velocidad nominal [min ⁻¹]		Par a v	/elocida [Nm]	d cero		Sobrecarga %
	2	55	4500	0,2	0,4	0,6	0,8	-	400
	3	86	4500	0,65	1,3	2,5	3,0	-	400
	4	98	3000	1	2,6	5,3	7,5	-	400
BCR	5	142	3000	6,6	10,5	13,5	17,0	22,0	300
	6	190	3000	13,5	19,0	22,0	29,0	-	300
	7	190	3000	27,0	32,0	40,0	-	-	300
	8	240	3000/2000	40,0	68,0	93,0	115,0	-	300

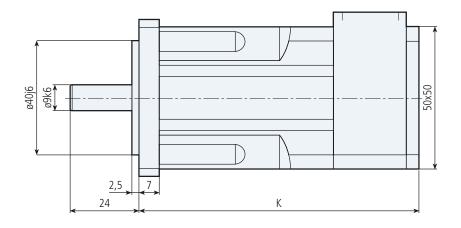


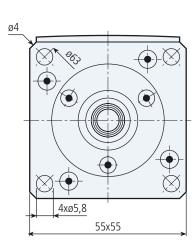
BCR2

Todos los servomotores BCR de tamaño 2 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).

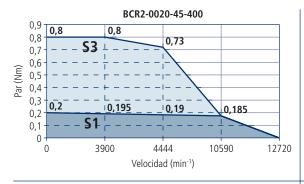

La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

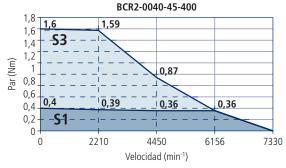

Motor	Par a velocidad cero	ero Velocidad nominal		Longitud K (mm)	
MOTOL	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BCR2-0020	0,2			98	131
BCR2-0040	0,4	4500	55	113	146
BCR2-0060	0,6	4500		128	161
BCR2-0080	0,8			143	176

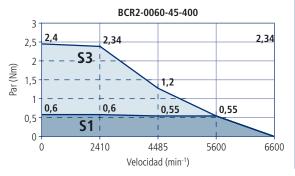

Se dispone de cuatro modelos de servomotor BCR 2 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 4500 min⁻¹.

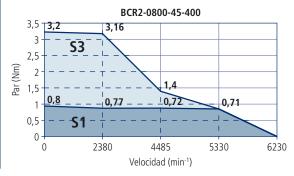
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)				
WOLOI	Radial F _R	Axial F _A			
BCR2-0020	225	43			
BCR2-0040	237	45			
BCR2-0060	245	47			
BCR2-0080	252	48			


Motor		BCR2-0020-45-400	BCR2-0040-45-400	BCR2-0060-45-400	BCR2-0080-45-400
Par a velocidad cero	M _o [Nm]	0.2	0.4	0.6	0.8
Velocidad nominal	n _n [min ⁻¹]	4500	4500	4500	4500
Tensión bus de CC del convertido	or V _{dc} [V]	560	560	560	560
Tensión nominal	V _n [V]	330	330	330	330
Número de polos de motor	p _{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0.19	0.36	0.55	0.72
Corriente nominal	I _n [A]	0.48	0.51	0.70	0.86
Corriente a velocidad cero	I _o [A]	0.47	0.54	0.73	0.91
Par de Pico	M _{max} [Nm]	0.8	1.6	2.4	3.2
Corriente de Pico	I _{max} [A]	2.0	2.3	3.1	3.9
Constante EMF	K _E [V/1000min ⁻¹]	25.5	45.0	50.0	53.0
Constante de par	K _T [Nm/A]	0.42	0.74	0.83	0.88
Potencia nominal	P _n [W]	90	170	260	340
Resistencia estatórica entre fases	$R_pp\left[\Omega ight]$	84.0	77.0	51.0	38.4
Inductancia estatórica entre fase	L _{pp} [mH]	50.0	62.0	45.5	39.7
Inercia de rotor	J _m [kgcm ²]	0.06	0.08	0.11	0.13
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	0.59	0.80	0.90	1.00
Constante de tiempo térmica	$\tau_{\text{th}} [\text{min}]$	10	15	20	22
Masa sin freno	m _M [kg]	0.9	1.06	1.21	1.36
Masa con freno	m _{MF} [kg]	1.05	1.21	1.36	1.51


 T_{amb} = 40 °C (temperatura ambiente)

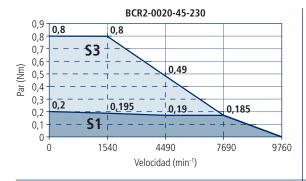

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

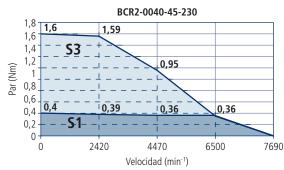

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

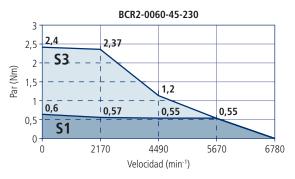
Característica par-velocidad:

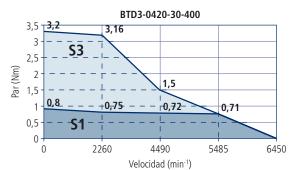
BCR2 230V

Motor		BCR2-0020-45-230	BCR2-0040-45-230	BCR2-0060-45-230	BCR2-0080-45-230
Par a velocidad cero	M _o [Nm]	0.2	0.4	0.6	0.8
Velocidad nominal	n _n [min ⁻¹]	4500	4500	4500	4500
Tensión bus de CC del convertido	r V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p _{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0.19	0.36	0.55	0.72
Corriente nominal	I _n [A]	0.60	0.88	1.18	1.47
Corriente a velocidad cero	I _o [A]	0.59	0.93	1.23	1.56
Par de Pico	M _{max} [Nm]	0.8	1.6	2.4	3.2
Corriente de Pico	I _{max} [A]	2.5	4.0	5.3	6.7
Constante EMF	(E [V/1000min ⁻¹]	20.5	26.0	30.0	31.0
Constante de par	K_T [Nm/A]	0.34	0.43	0.49	0.51
Potencia nominal	$P_{n}[W]$	90	170	260	340
Resistencia estatórica entre fases	$R_pp\left[\mathbf{\Omega}\right]$	54.0	26.3	19.9	14.6
Inductancia estatórica entre fase	L _{pp} [mH]	32.0	21.4	17.2	14.4
Inercia de rotor	J _m [kgcm ²]	0.06	0.08	0.11	0.13
Constante de tiempo eléctrica	$ au_{el}$ [ms]	0.59	0.82	0.87	0.98
Constante de tiempo térmica	$ au_{th}$ [min]	10	15	20	22
Masa sin freno	m _M [kg]	0.9	1.06	1.21	1.36
Masa con freno	m _{MF} [kg]	1.05	1.21	1.36	1.51


Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)

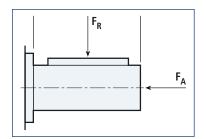

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

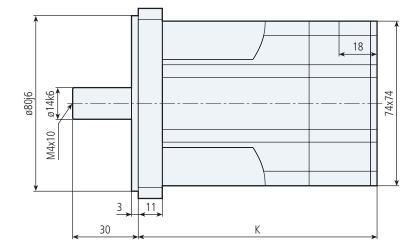
K (mm)

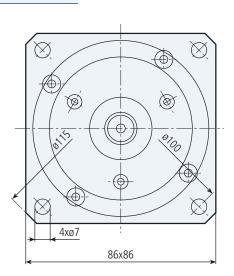
Todos los servomotores BCR de tamaño 3 presentan exactamente una brida de las mismas dimensiones, pero son diferentes en cuanto a longitud del motor (K), que depende del par. La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).

La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.


Matax	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
Motor	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BCR3-0065	0,65		86	109	142
BCR3-0130	1,3	4500		127	160
BCR3-0250	2,5	2,5 3,0		163	196
BCR3-0300	3,0			181	214

0,65 Nm
0,65 Nm
2,5 Nm
3 Nm


86 mm


Se dispone de cuatro modelos de servomotor BCR 3 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 4500 min⁻¹.

También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)				
MOTOL	Radial F _R	Axial F _A			
BCR3-0065	370	70			
BCR3-0130	393	75			
BCR3-0250	422	80			
BCR3-0300	431	82			

28

2.25

2.72

1.75

2.22

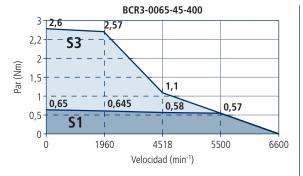
Características del motor en las siguientes condiciones:

 T_{amb} = 40 °C (temperatura ambiente)

Masa sin freno

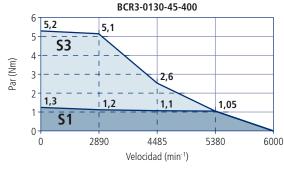
Masa con freno

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

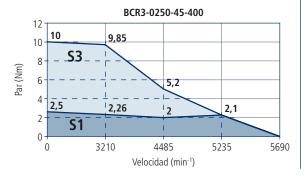

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

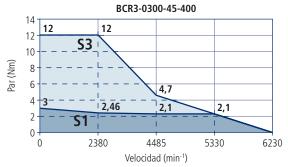
Característica par-velocidad:

temperatura ambiente 40°C


3.65

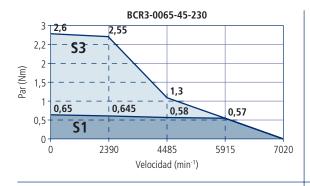
4.12

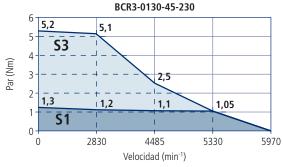

m_M [kg]

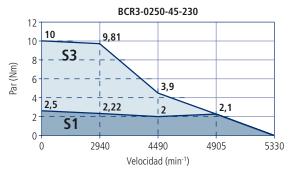

m_{MF} [kg]

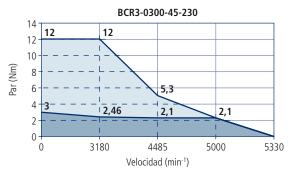
3.20

3.67

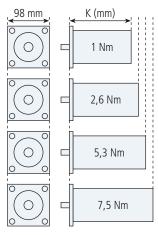

		DCD2 0005 45 220	PCD2 0420 45 020	BCD2 0250 45 220	DCD2 0200 45 220
Motor	-	BCR3-0065-45-230	BCR3-0130-45-230	BCR3-0250-45-230	BCR2-0300-45-230
Par a velocidad cero	M _o [Nm]	0.65	1.3	2.5	3
Velocidad nominal	n _n [min ⁻¹]	4500	4500	4500	4500
Tensión bus de CC del convertido	or V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p_{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0.58	1.05	2.0	2.1
Corriente nominal	I _n [A]	1.31	2.0	3.4	3.6
Corriente a velocidad cero	I _o [A]	1.38	2.4	4.0	4.8
Par de Pico	M _{max} [Nm]	2.6	5.2	10.0	12.0
Corriente de Pico	I _{max} [A]	5.9	10.1	17.3	21.0
Constante EMF	K _E [V/1000min ⁻¹]	28.5	33.5	37.5	37.5
Constante de par	K _T [Nm/A]	0.47	0.55	0.62	0.62
Potencia nominal	$P_{n}[W]$	220	495	940	990
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	15.6	6.5	3.0	2.1
Inductancia estatórica entre fase		20.0	11.1	6.0	5.0
Inercia de rotor	J _m [kgcm ²]	0.50	0.65	1.4	1.5
Constante de tiempo eléctrica	$ au_{\text{el}} [\text{ms}]$	1.3	1.7	2.0	2.4
Constante de tiempo térmica	$ au_{\text{th}}$ [min]	25	30	32	33
Masa sin freno	m _M [kg]	1.75	2.25	3.20	3.65
Masa con freno	m _{MF} [kg]	2.22	2.72	3.67	4.12


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)


Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

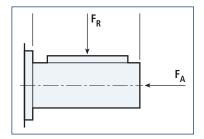
Característica par-velocidad:

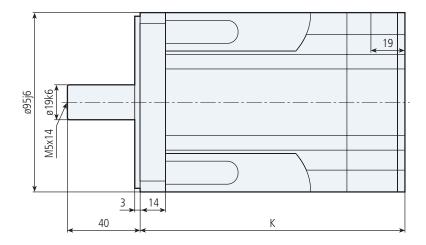


BCR4

Todos los servomotores BCR de tamaño 4 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).

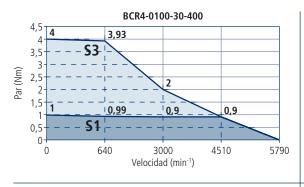

La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

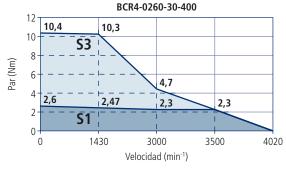

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
WOLOI	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BCR4-0100	1			116	148
BCR4-0260	2,6	2000	00	146	178
BCR4-0530	5,3	3000	98	176	208
BCR4-0750	7,5			221	253

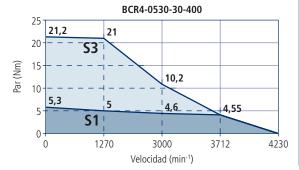

Se dispone de cuatro modelos de servomotor BCR 4 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 3000 min⁻¹.

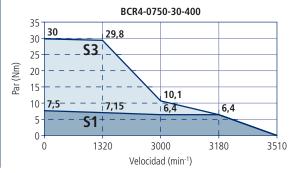
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)				
MOTOL	Radial F _R	Axial F _A			
BCR4-0100	328	62			
BCR4-0260	638	121			
BCR4-0530	676	128			
BCR4-0750	711	135			


Motor		BCR4-0100-30-400	BCR4-0260-30-400	BCR4-0530-30-400	BCR4-0750-30-400
Par a velocidad cero	M _o [Nm]	1.0	2.6	5.3	7.5
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	or V _{dc} [V]	560	560	560	560
Tensión nominal	V _n [V]	330	330	330	330
Número de polos de motor	p _{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	0.98	2.3	4.6	6.4
Corriente nominal	I _n [A]	1.05	1.85	3.8	4.4
Corriente a velocidad cero	I _o [A]	1.06	1.92	4.1	4.8
Par de Pico	M _{max} [Nm]	4	10.4	21.0	30.0
Corriente de Pico	I _{max} [A]	6.4	11.5	25.0	29.0
Constante EMF	K _E [V/1000min ⁻¹]	57	82.0	78.0	94.0
Constante de par	K_T [Nm/A]	0.94	1.36	1.29	1.55
Potencia nominal	P _n [W]	280	720	1440	2010
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	16.3	9.6	4.2	3.0
Inductancia estatórica entre fase	L _{pp} [mH]	75	41.5	24.0	19.2
Inercia de rotor	J _m [kgcm ²]	0.79	1.9	2.7	4.2
Constante de tiempo eléctrica	$ au_{\text{el}} [\text{ms}]$	2.1	4.3	5.7	6.4
Constante de tiempo térmica	$ au_{\text{th}}$ [min]	45	60	64	66
Masa sin freno	m _M [kg]	2.7	4.5	5.6	7.7
Masa con freno	m _{MF} [kg]	3.52	5.32	6.42	8.52


 T_{amb} = 40 °C (temperatura ambiente)

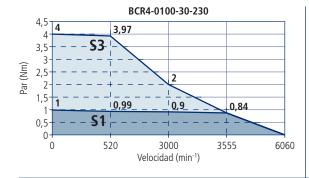

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

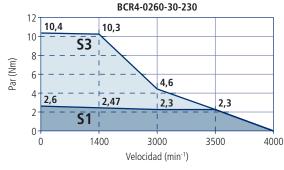

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

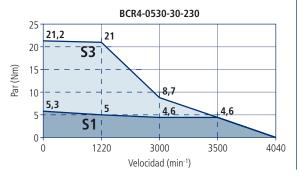
Característica par-velocidad:

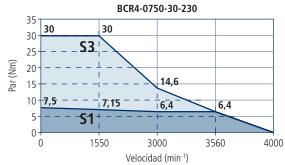
BCR4 230V

Motor		BCR4-0100-30-230	BCR4-0260-30-230	BCR4-0530-30-230	BCR4-0750-30-230
Par a velocidad cero	M _o [Nm]	1.0	2.6	5.3	7.5
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	r V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p_{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M_n [Nm]	0.98	2.3	4.6	6.4
Corriente nominal	I _n [A]	1.8	3.0	5.9	8.1
Corriente a velocidad cero	I _o [A]	1.83	3.1	6.5	9.1
Par de Pico	M _{max} [Nm]	4	10.4	21.0	30.0
Corriente de Pico	I _{max} [A]	11	18.9	39.0	54.0
Constante EMF K	_E [V/1000min ⁻¹]	33	50.0	49.5	50.0
Constante de par	K_T [Nm/A]	0.55	0.83	0.82	0.83
Potencia nominal	$P_{n}[W]$	280	720	1440	2010
Resistencia estatórica entre fases	$R_pp\left[\Omega ight]$	13.5	3.6	1.66	0.87
Inductancia estatórica entre fase	L _{pp} [mH]	25.7	15.9	9.8	5.6
Inercia de rotor	J _m [kgcm ²]	0.79	1.9	2.7	4.2
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	1.9	4.4	5.9	6.4
Constante de tiempo térmica	$\tau_{\text{th}} [\text{min}]$	45	60	64	66
Masa sin freno	m _M [kg]	2.7	4.5	5.6	7.7
Masa con freno	m _{MF} [kg]	3.52	5.32	6.42	8.52


Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)

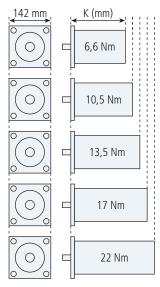

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

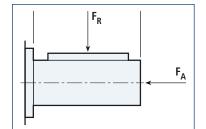
Característica par-velocidad:

BCR5

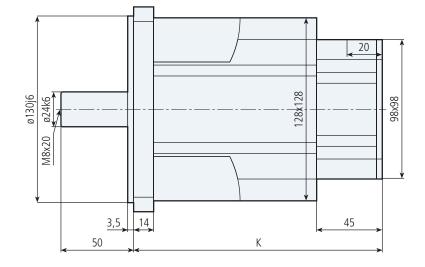
Todos los servomotores BCR de tamaño 5 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

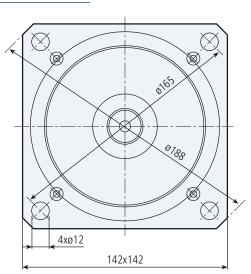
La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).


La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.


Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
MOTOL	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BCR5-0660	6,6			185	228
BCR5-1050	10,5			219	262
BCR5-1350	13,5	3000	142	236	279
BCR5-1700	17			270	313
BCR5-2200	22			304	347

Se dispone de cuatro modelos de servomotor BCR 5 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 3000 min⁻¹.


También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par.


Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

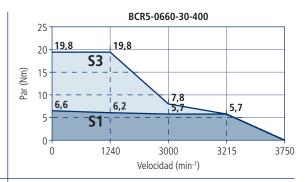
Motor	Carga máx. eje (N)	ix. eje (N)
WOLOI	Radial F _R	Axial F _A
BCR5-0660	693	132
BCR5-1050	733	139
BCR5-1350	748	142
BCR5-1700	772	147
BCR5-2200	790	150

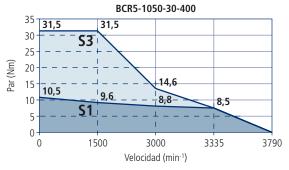
34

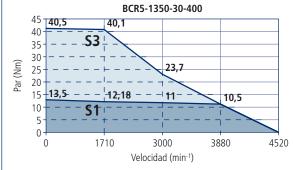
BCR5 400V

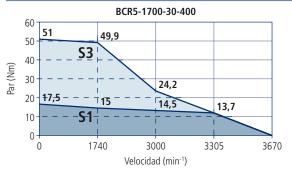
Motor		BCR5-0660-30-400	BCR5-1050-30-400	BCR5-1350-30-400	BCR5-1700-30-400	BCR5-2200-30-400
Par a velocidad cero	M _o [Nm]	6.6	10.5	13.5	17.0	22.0
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000	3000
Tensión bus de CC del convertido	r V _{dc} [V]	560	560	560	560	560
Tensión nominal	V _n [V]	330	330	330	330	330
Número de polos de motor	p _{mot}	6	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2	2
Par nominal	M _n [Nm]	5.7	8.8	11.0	14.5	17.5
Corriente nominal	I _n [A]	4.0	6.3	9.5	10.0	10.5
Corriente a velocidad cero	Ι _ο [A]	4.5	7.3	11.2	11.4	12.8
Par de Pico	M _{max} [Nm]	19.8	32.0	41.0	51.0	66.0
Corriente de Pico	I _{max} [A]	23	36	56	57	64
Constante EMF k	(_F [V/1000min ⁻¹]	88.0	87.0	73.0	90.0	104.0
Constante de par	K _T [Nm/A]	1.46	1.44	1.21	1.49	1.72
Potencia nominal	P _n [W]	1790	2760	3450	4550	5500
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	4.2	1.70	0.95	0.95	0.95
Inductancia estatórica entre fase	L _{nn} [mH]	27.8	15.2	9.0	10.0	10.5
Inercia de rotor	J _m [kgcm ²]	4.0	6.2	7.3	9.5	11.7
Constante de tiempo eléctrica	$ au_{ m el}$ [ms]	6.7	9.0	9.5	10.6	11.1
Constante de tiempo térmica	$ au_{th}$ [min]	45	50	55	60	75
Masa sin freno	m _M [kg]	7.5	10.0	11.2	13.7	16.2
Masa con freno	m _{MF} [kg]	9.3	11.8	13.0	15.5	18.0

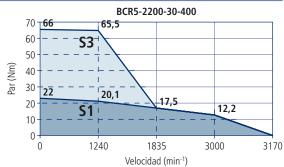
Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)

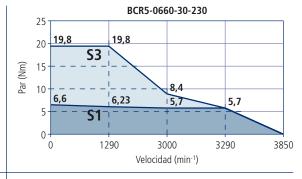

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

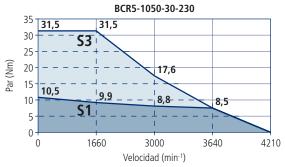

Curva S1 = para funcionamiento continuo

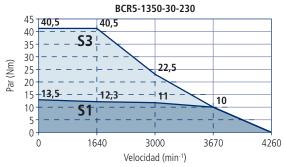

Curva S3 = para funcionamiento intermitente

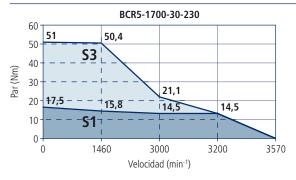

Característica par-velocidad:

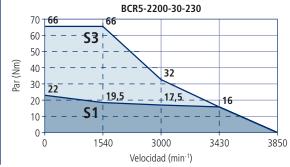
Motor		BCR5-0660-30-230	BCR5-1050-30-230	BCR5-1350-30-230	BCR5-1700-30-230	BCR5-2200-30-230
Par a velocidad cero	M _o [Nm]	6.6	10.5	13.5	17.0	22.0
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000	3000
Tensión bus de CC del convertidor	r V _{dc} [V]	320	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200	200
Número de polos de motor	p _{mot}	6	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2	2
Par nominal	M _n [Nm]	5.7	8.8	11.0	14.5	17.5
Corriente nominal	"I _n [A]	6.8	11.5	14.5	16.0	20.2
Corriente a velocidad cero	ι _ο [A]	7.7	13.4	17.4	18.4	25.6
Par de Pico	M _{max} [Nm]	19.8	32.0	41.0	51.0	66.0
Corriente de Pico	I _{max} [A]	38	67	87	91	127
Constante EMF K	_F [V/1000min ⁻¹]	52.0	47.5	47.0	56.0	52.0
Constante de par	K _T [Nm/A]	0.86	0.79	0.78	0.93	0.86
Potencia nominal	P _n [W]	1790	2760	3450	4550	5500
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	1.44	0.51	0.38	0.36	0.24
Inductancia estatórica entre fase	L _{nn} [mH]	9.6	4.6	3.6	3.8	2.6
Inercia de rotor	J _m [kgcm²]	4.0	6.2	7.3	9.5	11.7
Constante de tiempo eléctrica	$ au_{ m el}$ [ms]	6.7	9.0	9.5	10.6	10.8
Constante de tiempo térmica	τ_{th} [min]	45	50	55	60	75
Masa sin freno	m _M [kg]	7.5	10.0	11.2	13.7	16.2
Masa con freno	m _{MF} [kg]	9.3	11.8	13.0	15.5	18.0

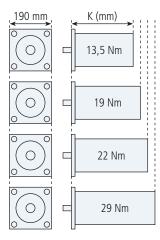

 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)


Curva S1 = para funcionamiento continuo


Curva S3 = para funcionamiento intermitente

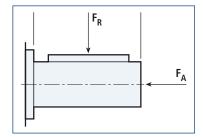

Característica par-velocidad:

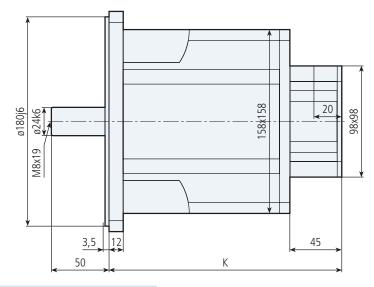


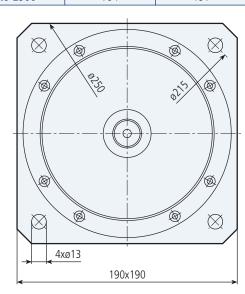
BCR6

Todos los servomotores BCR de tamaño 6 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).

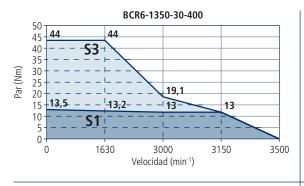

La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

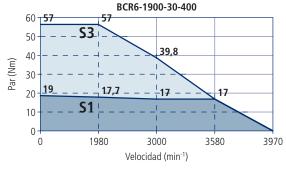

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
WOLUI	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BCR6-1350	13,5			201	254
BCR6-1900	19	3000	100	235	288
BCR6-2200	22	3000	190	250	303
BCR6-2900	29			310	363

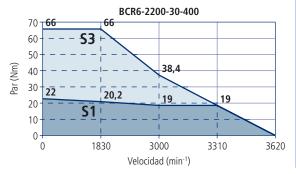

Se dispone de cuatro modelos de servomotor BCR 6 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidad nominal de 3000 min⁻¹.

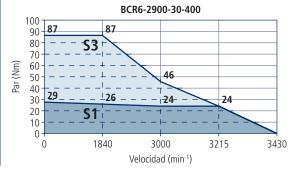
También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)	x. eje (N)
MOTOL	Radial F _R	Axial F _A
BCR6-1350	708	135
BCR6-1900	743	141
BCR6-2200	756	144
BCR6-2900	794	151


Motor		BCR6-1350-30-400	BCR6-1900-30-400	BCR6-2200-30-400	BCR6-2900-30-400
Par a velocidad cero	M _o [Nm]	13.5	19	22	29
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	r V _{dc} [V]	560	560	560	560
Tensión nominal	V _n [V]	330	330	330	330
Número de polos de motor	p _{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M_n [Nm]	13.0	17.0	19.0	24.0
Corriente nominal	I _n [A]	8.2	12.8	13.1	14.7
Corriente a velocidad cero	I _o [A]	8.2	13.8	14.6	17.2
Par de Pico	M _{max} [Nm]	41.0	57.0	66.0	87.0
Corriente de Pico	I _{max} [A]	35	59	62	73
Constante EMF K	(E [V/1000min ⁻¹]	100.0	83.0	91.0	102.0
Constante de par	K_T [Nm/A]	1.65	1.37	1.51	1.69
Potencia nominal	$P_{n}[W]$	4080	5340	5970	7540
Resistencia estatórica entre fases	$R_pp\left[\Omega ight]$	1.10	0.42	0.41	0.31
Inductancia estatórica entre fase	L _{pp} [mH]	13.5	6.3	6.4	5.6
Inercia de rotor	J _m [kgcm ²]	13.1	18.7	22.0	33.0
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	12.3	15.0	15.6	18.1
Constante de tiempo térmica	$\tau_{\text{th}} \ [\text{min}]$	45	53	60	70
Masa sin freno	m _M [kg]	13.9	18.2	20.3	26.7
Masa con freno	m _{MF} [kg]	16.76	21.06	23.16	29.56


 T_{amb} = 40 °C (temperatura ambiente)

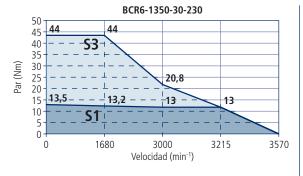

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

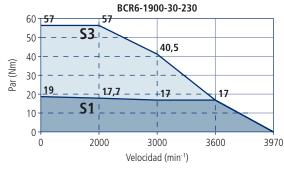

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

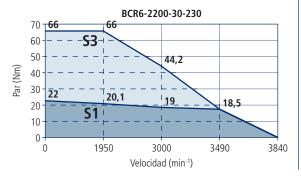
Característica par-velocidad:

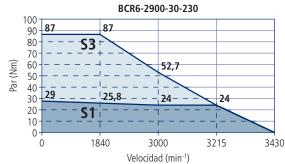
BCR6 230V

Motor		BCR6-1350-30-230	BCR6-1900-30-230	BCR6-2200-30-230	BCR6-2900-30-230
Par a velocidad cero	M _o [Nm]	13.5	19	22	29
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000	3000
Tensión bus de CC del convertido	or V _{dc} [V]	320	320	320	320
Tensión nominal	V _n [V]	200	200	200	200
Número de polos de motor	p_{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M_n [Nm]	13.0	17.0	19.0	24.0
Corriente nominal	I _n [A]	14.6	21.3	22.9	26.8
Corriente a velocidad cero	I _o [A]	14.6	23.0	25.6	31.3
Par de Pico	M _{max} [Nm]	41.0	57.0	66.0	87.0
Corriente de Pico	I _{max} [A]	62	97	108	132
Constante EMF	K _E [V/1000min ⁻¹]	56.0	50.0	52.0	56.0
Constante de par	K_T [Nm/A]	0.93	0.83	0.86	0.93
Potencia nominal	$P_{n}[W]$	4080	5340	5970	7540
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	0.34	0.15	0.13	0.09
Inductancia estatórica entre fase	L _{pp} [mH]	4.2	2.3	2.1	1.7
Inercia de rotor	J _m [kgcm ²]	13.1	18.7	22.0	33.0
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	12.4	15.3	16.2	18.9
Constante de tiempo térmica	$ au_{\text{th}}$ [min]	45	53	60	70
Masa sin freno	m _M [kg]	13.9	18.2	20.3	26.7
Masa con freno	m _{MF} [kg]	16.76	21.06	23.16	29.56


Características del motor en las siguientes condiciones:


 T_{amb} = 40 °C (temperatura ambiente)

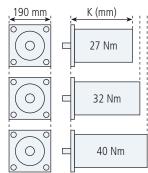

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

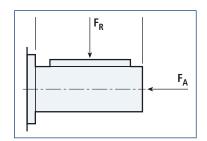

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

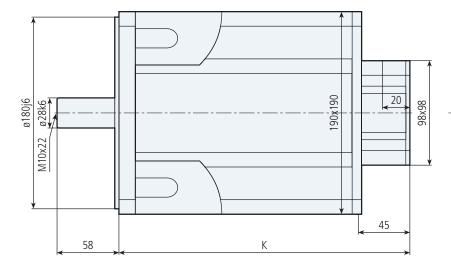
BCR7

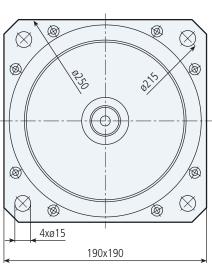
Todos los servomotores BCR de tamaño 7 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.


La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).


La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

Motor	Par a velocidad cero	Velocidad nominal	Brida	Longitud	d K (mm)
WIOLUI	(Nm)	(min ⁻¹)	(mm)	Sin freno	Con freno
BCR7-2700	27			242	296
BCR7-3200	32	3000	190	257	311
BCR7-4000	40			287	341


Se dispone de tres modelos de servomotor BCR 7 según el par disponible, que corresponden a cada una de las tres longitudes de motor, con velocidad nominal de 3000 min⁻¹.


También se dispone de tensiones de 400Vac y 230Vac manteniendo los mismos valores de par. Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

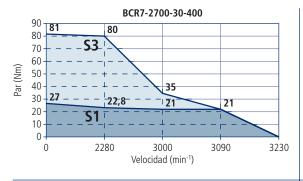
Motor	Carga máx. eje (N)				
MOTOL	Radial F _R	Axial F _A			
BCR7-2700	1348	256			
BCR7-3200	1370	260			
BCR7-4000	1406	267			

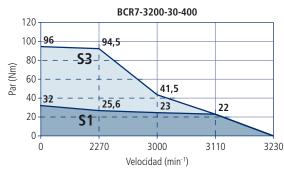
40

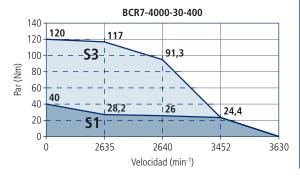
BTD - BCR

BCR7 400V

Motor		BCR7-2700-30-400	BCR7-3200-30-400	BCR7-4000-30-400
Par a velocidad cero	М _о [Nm]	27	32	40
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000
Tensión bus de CC del convertid	or V _{dc} [V]	560	560	560
Tensión nominal	V _n [V]	330	330	330
Número de polos de motor	p _{mot}	6	6	6
Número de polos de resolver	p _{res}	2	2	2
Par nominal	M _n [Nm]	21.0	23.0	26.0
Corriente nominal	I _n [A]	13.5	15.0	17.9
Corriente a velocidad cero	I _o [A]	16.0	19.0	24.7
Par de Pico	M _{max} [Nm]	81.0	96.0	120.0
Corriente de Pico	I _{max} [A]	62	74	96
Constante EMF	K _E [V/1000min ⁻¹]	102	102	98
Constante de par	K _T [Nm/A]	1.69	1.69	1.62
Potencia nominal	P _n [W]	6600	7160	8170
Resistencia estatórica entre fase	s $R_{pp}[\Omega]$	0.43	0.35	0.23
Inductancia estatórica entre fase	e L _{pp} [mH]	4.4	3.8	2.7
Inercia de rotor	J _m [kgcm ²]	36.1	39.0	45.5
Constante de tiempo eléctrica	$ au_{ ext{el}} [ext{ms}]$	10.2	10.8	11.7
Constante de tiempo térmica	$ au_{\text{th}}$ [min]	60	67	72
Masa sin freno	m _M [kg]	23.5	26.0	31.5
Masa con freno	m _{MF} [kg]	26.75	29.25	34.4

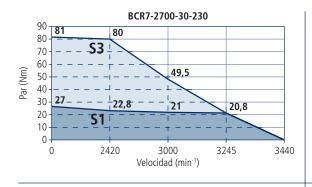

Características del motor en las siguientes condiciones:

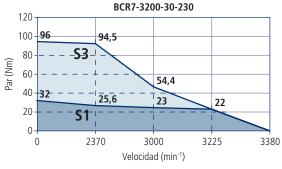

 T_{amb} = 40 °C (temperatura ambiente)

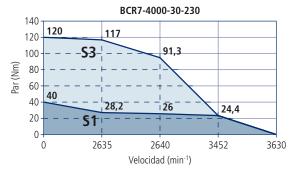

 ΔT = 105 °C (temperatura de calentamiento del bobinado)

Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:


Motor		BCR7-2700-30-230	BCR7-3200-30-230	BCR7-4000-30-230
Par a velocidad cero	M _o [Nm]	27	32	40
Velocidad nominal	n _n [min ⁻¹]	3000	3000	3000
Tensión bus de CC del convertido	r V _{dc} [V]	320	320	320
Tensión nominal	V _n [V]	200	200	200
Número de polos de motor	p _{mot}	6	6	6
Número de polos de resolver	p _{res}	2	2	2
Par nominal	M _n [Nm]	21.0	23.0	26.0
Corriente nominal	I _n [A]	23.7	25.9	31.8
Corriente a velocidad cero	I _o [A]	28.2	32.8	44.0
Par de Pico	M _{max} [Nm]	81.0	96.0	120.0
Corriente de Pico	I _{max} [A]	110	128	172
Constante EMF k	C _E [V/1000min ⁻¹]	58	59	55
Constante de par	K _T [Nm/A]	0.96	0.98	0.91
Potencia nominal	P _n [W]	6600	7160	8170
Resistencia estatórica entre fases	$R_{pp}[\Omega]$	0.15	0.12	0.07
Inductancia estatórica entre fase	L _{pp} [mH]	2.2	3.0	0.8
Inercia de rotor	J _m [kgcm ²]	36.1	39.0	45.5
Constante de tiempo eléctrica	$ au_{ m el}[{ m ms}]$	14.7	10.8	11.4
Constante de tiempo térmica	τ _{th} [min]	60	67	72
Masa sin freno	m _M [kg]	23.5	26.0	31.5
Masa con freno	m _{MF} [kg]	26.75	29.25	34.4


 T_{amb} = 40 °C (temperatura ambiente)


 ΔT = 105 °C (temperatura de calentamiento del bobinado)

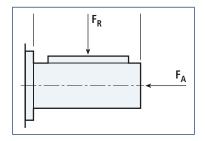
Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

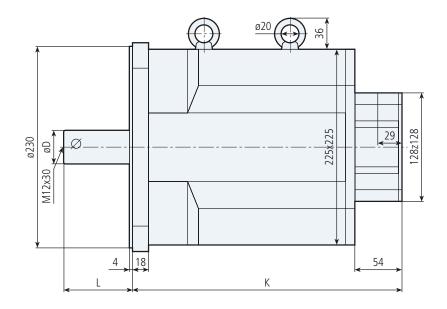
BCR8

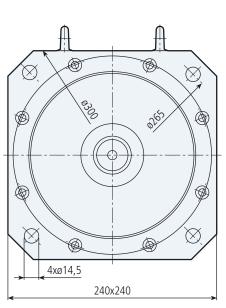
Todos los servomotores BCR de tamaño 8 presentan exactamente la misma brida, pero son diferentes en cuanto a longitud del motor (K), que depende del par.

La versión básica del motor no dispone de freno; sin embargo, es una opción que se puede seleccionar utilizando la secuencia numérica de la denominación (consulte el capítulo relacionado con la denominación del servomotor).


La longitud del motor (K) puede tener dos valores diferentes, dependiendo de si el freno está instalado.

Motor	Par a velocidad cero Velocidad nominal E		Eje (mm)	Brida	Longitud K (mm)	
WIOLOI	(Nm)	(min ⁻¹)	Diámetro ø	Longitud L	(mm)	Sin freno	Con freno
BCR8-0400	40	3000	38	80		311	379
BCR8-0680	68	2000	38	80	240	379	447
BCR8-0930	93	2000	42	110		447	515
BCR8-1150	115	2000	42	110		515	583


Se dispone de cuatro modelos de servomotor BCR 3 según el par disponible, que corresponden a cada una de las cuatro longitudes de motor, con velocidades nominales de 2000 o 3000 min⁻¹.


Sólo se dispone de tensión de 400Vac.

Los conectores estándar sirven para conexionar el servomotor con el convertidor de frecuencia. También se pueden solicitar otros tipos de conectores (consulte el capítulo relacionado con los conectores).

Motor	Carga máx. eje (N)				
MOLOI	Radial F _R	Axial F _A			
BCR8-0400	1702	323			
BCR8-0680	1785	339			
BCR8-0930	1775	337			
BCR8-1150	1823	346			

Motor		BCR8-0400-20-400	BCR8-0680-30-400	BCR8-0930-30-400	BCR8-1150-30-400
Par a velocidad cero	M _o [Nm]	40	68	93	115
Velocidad nominal	n _n [min ⁻¹]	3000	2000	2000	2000
Tensión bus de CC del convertido	r V _{dc} [V]	560	560	560	560
Tensión nominal	V _n [V]	350	350	350	350
Número de polos de motor	p _{mot}	6	6	6	6
Número de polos de resolver	p _{res}	2	2	2	2
Par nominal	M _n [Nm]	30.0	56.0	70.0	85.0
Corriente nominal	I _n [A]	17.8	22.0	25.3	32.4
Corriente a velocidad cero	I _o [A]	21.8	25.4	33.1	42.1
Par de Pico	M _{max} [Nm]	120	204	279	345
Corriente de Pico	I _{max} [A]	85	99	129	164
Constante EMF k	C _E [V/1000min ⁻¹]	111	162	170	165
Constante de par	K_T [Nm/A]	1.84	2.7	2.8	2.7
Potencia nominal	P _n [W]	9420	11730	14660	17800
Resistencia estatórica entre fases	$R_pp\left[\Omega\right]$	0.25	0.24	0.15	0.11
Inductancia estatórica entre fase	L _{pp} [mH]	5.7	6.3	4.8	3.4
Inercia de rotor	J _m [kgcm ²]	76	114	153	190
Constante de tiempo eléctrica	$\tau_{\text{el}}[\text{ms}]$	23	26	32	31
Constante de tiempo térmica	$\tau_{\text{th}} [\text{min}]$	47	65	79	90
Masa sin freno	m _M [kg]	41	56	73	89
Masa con freno	m _{MF} [kg]	50.5	65.5	92.5	98.5

= 40 °C (temperatura ambiente)

300 **7279**

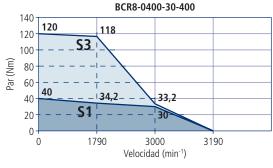
250

200 Par (Nm)

150

100

50

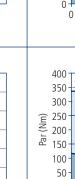

0

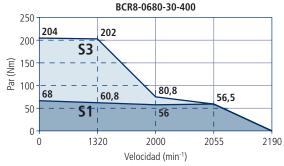
= 105 °C (temperatura de calentamiento del bobinado)

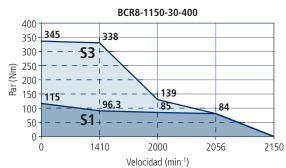
Curva S1 = para funcionamiento continuo Curva S3 = para funcionamiento intermitente

Característica par-velocidad:

temperatura ambiente 40°C




BCR8-0930-30-400


2000

Velocidad (min⁻¹)

2090

1310

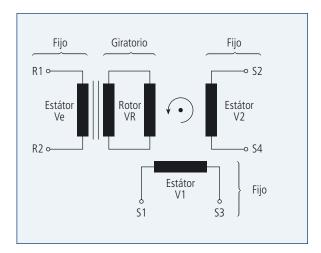
Realimentación con Resolver

A fin de lograr una precisión de 1' de fluctuación en el eje motor, en todos los servomotores de las series BCR y BTD de Bonfiglioli se emplea un resolver para la realimentación.

El uso de este tipo de transductor garantiza una precisión absoluta del eje motor de \pm 4°, así como una fluctuación máxima de 1'.

Precisión (ϵ) = ángulo eléctrico (θ_{el}) - ángulo mecánico (θ_{mech})

Los convertidores pertenecientes a la serie ACTIVE de Bonfiglioli Vectron utilizan una interfaz electrónica sofisticada para captar las señales de accionamiento. El empleo de servomotores BCR y BTD con estos convertidores reduce drásticamente los efectos de distorsión armónica de las señales sinusoidales y mejora de forma notable tanto la precisión absoluta como la precisión de rizado.

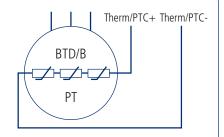

Los servomotores BCR y BTD pueden disponer de otros tipos de dispositivos de realimentación si se solicita. Si desea obtener más información, póngase en contacto con el Centro de servicio para accionamientos (DSC) de Bonfiglioli.

Soluciones para Procesos y Automatizaciones Industriales

Ficha de datos del resolver

BTD - BCR

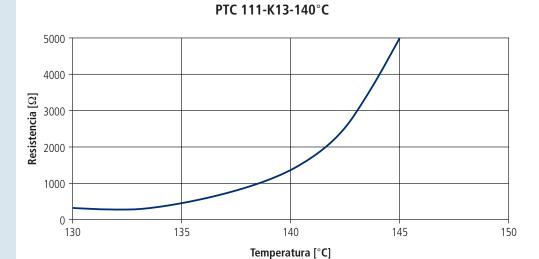
45


Opción	Valor			
Número de polos	2			
Relación de transformación	0.5±0.05			
Tensión de entrada	$7 V_{rms}$			
Corriente de entrada	58 mA			
Frecuencia de entrada	5 kHz			
Desviación de fase	8°			
Tensión cero	30 mV max			
Impedancia Z_{ro} (Ω)	75 j 98			
Impedancia Z_{rs} (Ω)	70 j 85			
Impedancia Z_{so} (Ω)	180 j 230			
Impedancia Z_{ss} (Ω)	170 j 200			
Resistencia de CC (±10%) de rotor	40 Ω			
Resistencia de CC (±10%) de estátor	102 Ω			
Precisión	±10'			
Precisión de rizado	1' max			
Temperatura de funcionamiento	-55°C+155°C			
Velocidad máxima	20,000 min ⁻¹			
Impacto (11 ms)	≤ 100 m/s ²			
Vibración (10 a 500 Hz)	≤ 500 m/s ²			
Peso de rotor	25 g			
Peso de estátor	60 g			
Inercia de rotor	0.02 x 10 ⁻⁴ kgm ²			
Aislamiento entre alojamiento/bobinado	500 V min.			
Aislamiento entre bobinado/bobinado	250 V min.			
Tecnología de rotor	Impregnación total			
Tecnología de estátor	Impregnación total			
Longitud de estátor	16.1 mm			

46

BTD - BCR

Protección térmica PTC



Todos los motores de las series BCR y BTD disponen de sensor de temperatura PTC integrado para proteger los bobinados de temperaturas excesivamente altas que superan la capacidad del aislamiento del motor, que es de clase F.

No se trata de sensores opcionales, sino que, de acuerdo con la norma DIN 44081, vienen instalados de serie en todos los servomotores Bonfiglioli.

Para garantizar el cumplimiento de la norma EN 61800-5-1 relativa a la seguridad cuando los motores están conectados a un inversor de frecuencia, en el sensor PTC de los servomotores BCR y BTD se utiliza la tecnología de doble aislamiento.

El sensor de temperatura PTC consta de una resistencia cerámica especial cuyo valor óhmico varía según la temperatura del bobinado eléctrico, con el que se encuentra en contacto. Como cada valor de temperatura genera una resistencia conocida, la corriente de salida se puede utilizar para determinar la temperatura correspondiente cuando la resistencia recibe una tensión constante. Si la temperatura alcanza el límite establecido, el circuito que monitoriza la señal determina el momento en que es preciso interrumpir el suministro de potencia al motor para evitar daños.

La señal de salida que genera el sensor PTC pasa a través de los pines 2 (PTC+) y 6 (PTC-) del conector de señal de 12 pines del motor junto con las señales del resolver.

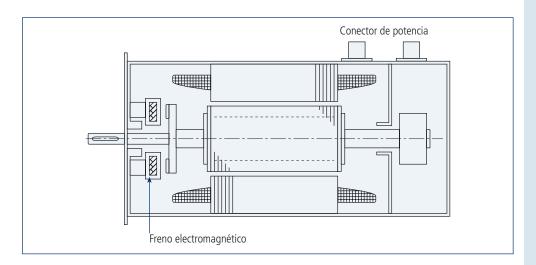
47

Freno electromecánico (opcional)

Dado que los servomotores BTD y BCR actúan como dispositivos de accionamiento de cuatro cuadrantes, están diseñados para desarrollar un par con valor positivo cuando funcionan como motores y un par negativo cuando hacen las veces de generador.

Por consiguiente, ambos son capaces de frenar la carga mecánica de forma dinámica y estática (par de parada) en cualquier punto de trabajo de la curva del motor correspondiente.

Para seleccionar el freno opcional, puede incluir el valor "FD24" en el campo correspondiente de la denominación del servomotor (consulte las páginas 8 y 9 del catálogo).


En el motor se puede instalar un freno en caso de que se suministre sin freno.

La bobina del freno funciona con corriente continua de 24 V.

La instalación del freno aumenta la longitud del motor (consulte la dimensión K en el esquema de cada motor).

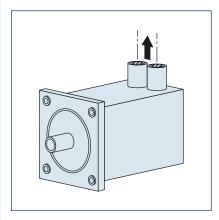
La activación del freno (bloqueo del rotor) nunca debe ser efectuada cuando el motor está girando. El freno debe activarse siempre cuando se haya alcanzado la velocidad cero. Para lograr esto recomendamos que la gestión del freno la realice el propio convertidor de frecuencia mediante la función correspondiente.

Cuando el motor lleve el freno instalado, los conductores del freno estarán conectados al conector de potencia junto al bobinado del motor.

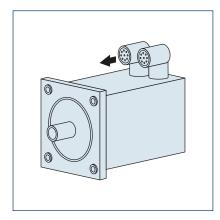
El freno electromecánico que se instala en el motor depende del tamaño del mismo, y presenta un par de frenado diferente en función de las características del motor.

Datos del freno	Unidad	BTD2	BTD3	BTD4	BTD5	BCR2	BCR3	BCR4	BCR5	BCR6	BCR7	BCR8
Par	Nm	2	4,5	9	18	2,0	4,5	9,0	18,0	36,0	36,0	145,0
Alimentación	VDC		24 (+6% - 10%)									
Potencia nominal	W	11	12	18	24	11	12	18	24	26	26	50
Momento de inercia	Kgcm2	0,068	0,18	0,54	1,66	0,068	0,18	0,54	1,66	5,56	5,56	53,0
Peso	Kg	0,440	0,590	0,820	1,080	0,15	0,47	0,650	1,350	2,860	3,250	9,500

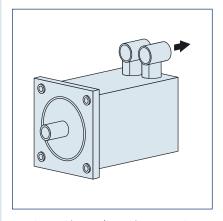
48

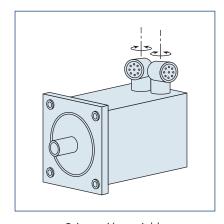

BTD - BCR

Conectores eléctricos


Los servomotores BTD y BCR disponen de conectores de potencia y señal necesarios, incluso en las configuraciones básicas.

Los conectores se encuentran situados en una posición fácilmente accesible en la parte superior trasera del motor.


Aunque los conectores son de disposición vertical por defecto, también existen conectores acodados orientados hacia la brida (tipos PA y CA) o en dirección contraria a la brida (tipos PB y CB). También se dispone de conectores acodados orientables (tipos PT y CT).


Orientación vertical (por defecto)

Orientación hacia la brida (PAxx y CAxx)

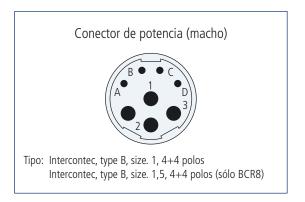
Orientación en dirección contraria a la brida (PBxx y CBxx)

Orientación variable (giratorio, PTxx y CTxx)

Todos los conectores del motor son conectores macho, totalmente compatibles con los correspondientes conectores hembra de los cables suministrados como accesorio.

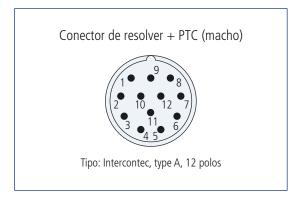
Esquema de los conectores

Detalle de los conectores del motor


En la imagen se muestran los conectores verticales convencionales. La distribución de los pines no depende del tipo de conector, sino que es la misma en todos los conectores, incluso los horizontales y giratorios.

Conector de potencia (motor + freno)

Los conectores de potencia llevan pines que transmiten corriente al motor y al freno, sin importar si el modelo de motor lleva realmente freno o no.


En el esquema de la tabla siguiente, los pines están distribuidos en dos grupos de cuatro, según sección de conductor.

Motor + freno					
Clavija	Descripción				
1	Fase U				
4	Fase V				
3	Fase W				
2	Tierra / SL				
С	Freno +				
D	Freno -				
Α	nc / reserva				
В	nc / reserva				

Conector de señal (resolver + sensor PTC)

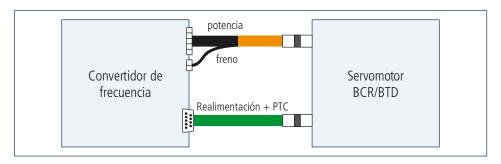
Los conectores de señal llevan pines para el resolver y el sensor PTC, que es un componente interno estándar de todos los motores.

Resolver + PTC				
Clavija	Descripción			
3	Cos + (S4)			
7	Cos - (S2)			
4	Sin + (S1)			
8	Sin - (S3)			
5	Ref + (R2)			
9	Ref - (R1)			
2	Therm / PTC +			
6	Therm / PTC -			

Servocables (accesorios)

El término "servocable" hace referencia a las mangueras eléctricas que permiten conectar los servomotores de Bonfiglioli a los correspondientes convertidores.

Para cada tamaño de servomotor de las series BTD y BCR hay disponible un juego de servocables de potencia y de señal de realimentación.

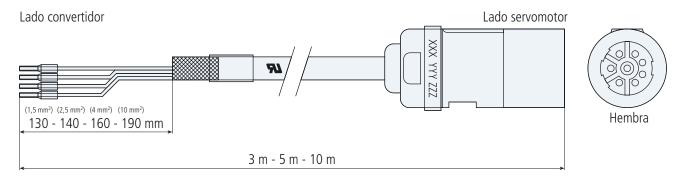

Los servocables de Bonfiglioli pertenecen a una de estas dos categorías: "potencia" y "señal". Todos los cables se encuentran disponibles en tres longitudes:

- 3 m
- 5 m
- 10 m

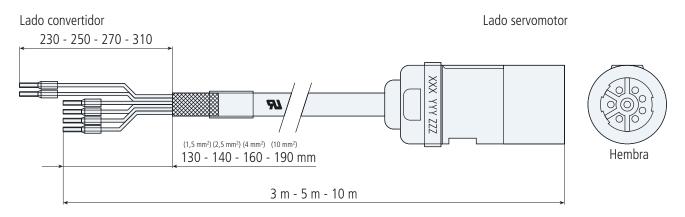
A su vez, los cables de potencia se pueden dividir en cables para sistemas "sin freno" y "con freno". Estos últimos se pueden utilizar tanto con servomotores normales como con servomotores con freno.

Los cables de señal transmiten las señales del resolver y el sensor de temperatura PTC.

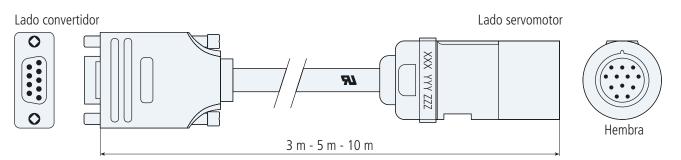
Diagrama por bloques de los servoaccionamientos Bonfiglioli


Bonfiglioli ofrece 27 tipos diferentes de servocables, con longitud y diámetro de conductores variable en función de las siguientes características:

Tipo de cable	Características		Código
Cables de potencia (sólo motor)	4 x (1.5 mm²)	3 metros	40MC0315
	4 x (1.5 mm ²)	5 metros	40MC0515
	4 x (1.5 mm ²)	10 metros	40MC1015
	4 x (2.5 mm ²)	3 metros	40MC0325
	4 x (2.5 mm ²)	5 metros	40MC0525
	4 x (2.5 mm ²)	10 metros	40MC1025
	4 x (4 mm ²)	3 metros	40MC0340
	4 x (4 mm²)	5 metros	40MC0540
	4 x (4 mm ²)	10 metros	40MC1040
	4 x (10 mm ²)	3 metros	40MC03100
	4 x (10 mm ²)	5 metros	40MC05100
	4 x (10 mm ²)	10 metros	40MC10100
Cables de potencia (motor + freno)	$4 \times (1.5 \text{ mm}^2) + 2 \times (1.0 \text{ mm}^2)$	3 metros	42MBC0315
	$4 \times (1.5 \text{ mm}^2) + 2 \times (1.0 \text{ mm}^2)$	5 metros	42MBC0515
	$4 \times (1.5 \text{ mm}^2) + 2 \times (1.0 \text{ mm}^2)$	10 metros	42MBC1015
	$4 \times (2.5 \text{ mm}^2) + 2 \times (1.0 \text{ mm}^2)$	3 metros	42MBC0325
	$4 \times (2.5 \text{ mm}^2) + 2 \times (1.0 \text{ mm}^2)$	5 metros	42MBC0525
	$4 \times (2.5 \text{ mm}^2) + 2 \times (1.0 \text{ mm}^2)$	10 metros	42MBC1025
	$4 \times (4.0 \text{ mm}^2) + 2 \times (1.5 \text{ mm}^2)$	3 metros	42MBC0340
	4 x (4.0 mm ²) + 2 x (1.5 mm ²)	5 metros	42MBC0540
	4 x (4.0 mm ²) + 2 x (1.5 mm ²)	10 metros	42MBC1040
	$4 \times (10 \text{ mm}^2) + 2 \times (1 \text{ mm}^2)$	3 metros	42MBC03100
	$4 \times (10 \text{ mm}^2) + 2 \times (1 \text{ mm}^2)$	5 metros	42MBC05100
	4 x (10 mm ²) + 2 x (1 mm ²)	10 metros	42MBC10100
Cables de señal (resolver + sensor PTC)	8 x (0.25 mm ²)	3 metros	8RTC0325
	8 x (0.25 mm ²)	5 metros	8RTC0525
	8 x (0.25 mm ²)	10 metros	8RTC1025



Servocables (accesorios)


Cable de potencia sólo para motor (tipo 40MCXXXX):

Cable de potencia para motor y freno (tipo 42MBCXXXX):

Cable de señal para resolver y PTC (tipo 8RTCXXXX):

